ny_quant: (Default)
[personal profile] ny_quant
Добавление ко вчерашнему:



the data in Figure 2 shows a decrease in infection rates after countries eased national lockdowns with >99% statistical significance""

Date: 2020-05-26 04:30 pm (UTC)
From: [identity profile] ny-quant.livejournal.com
An alternative process is commonly used:

1. Compute from the observations the observed value t_obs of the test statistic T.
2. Calculate the p-value. This is the probability, under the null hypothesis, of sampling a test statistic at least as extreme as that which was observed.
3. Reject the null hypothesis, in favor of the alternative hypothesis, if and only if the p-value is less than (or equal to) the significance level (the selected probability) threshold

What exactly is null hypothesis? That we got our "good fit" by accident, right? No distributional assumptions are required.

Случайно наткнулся на экономиста, который решил написать серию заметок типа введения в статистику.

https://hroniki-paisano.livejournal.com/118867.html
https://hroniki-paisano.livejournal.com/119264.html

Интересно, что он тоже не заморачивается спецификацией нулевой гипотезы.

Date: 2020-05-26 08:42 pm (UTC)
From: [identity profile] misha-b.livejournal.com
We need a model for point two above: "This is the probability, under the null hypothesis, of sampling a test statistic at least as extreme as that which was observed."

For example what is 99% in your original post refers to? I have no idea, but here is one possibility: assume that the point has equal probability to be above and below the line and assume that the points are sampled iid. Under this model the picture shown in the graph is very unlikely and we can reject this hypothesis. However, iid is an key assumption here. If these data are not iid, this conclusion in general cannot be made.

For example, imagine that the rates are perfectly correlated between the states. Then either all of them will be below the line or all of them will be above the line.

Date: 2020-05-26 09:57 pm (UTC)
From: [identity profile] ny-quant.livejournal.com
I certainly agree that one needs to state what hypothesis we are testing, i.e. what we want to accept in the end, or in the worst case reject. I'm sure the author of this note did have a very well-defined hypothesis but this little detail didn't get into condensed summary that was available to me.

I thought your original complaint was that the model that we hope to reject based on low p-value is not stated.
Edited Date: 2020-05-26 10:08 pm (UTC)

Date: 2020-05-26 11:50 pm (UTC)
From: [identity profile] misha-b.livejournal.com
That's right, the issue I had was using a very suggestive number, like 99% without explaining the model. It is quite possible that the author had a very reasonable model. But I have seen this misused or abused many times, so I am by default skeptical.
Edited Date: 2020-05-26 11:50 pm (UTC)

Date: 2020-05-26 11:55 pm (UTC)
From: [identity profile] misha-b.livejournal.com

99% is not the worst actually -- sometimes people have 99.9999% or something like that and you immediately suspect something is fishy.

Date: 2020-06-27 06:10 pm (UTC)
From: [identity profile] ny-quant.livejournal.com
Я прочитал вашу статью. Во-первых, я, конечно очень слабо разбираюсь в теме: Decision Trees and Ensemble Methods единственное что я хоть как-то понимаю. Во-вторых, мне очень трудно привязать ваши результаты к какой-либо конкретной задаче. В моём маленьком мире очень мало полезных фич (по крайней мере я так думаю) и очень много шума. Было бы хорошо иметь перед глазами какой-то простой конкретный пример когда действительно получается омега-shaped curve.

Date: 2020-07-08 05:00 pm (UTC)
From: [identity profile] misha-b.livejournal.com
Sorry, forgot to answer this. We did not want to call the curve omega-shaped or W-shaped because the second part typically does not rise. It is "cursive-u" shaped in most examples we looked at.

You can take a look at a simple synthetic model with linear regression, where the features of this curve can be seen: https://arxiv.org/abs/1903.07571

Profile

ny_quant: (Default)
ny_quant

January 2026

S M T W T F S
    123
45 6 7 8 9 10
11 12 13 14 151617
1819 20 21 222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 23rd, 2026 11:45 pm
Powered by Dreamwidth Studios