Математическое
Jul. 22nd, 2016 10:27 am
Рассмотрим задачу минимизации в Rn:
F(x) -> min
при ограничениях
G(x)=0 Edit: обсуждение показало, что это условие лишнее.
H(x)>=0
Хочется сформулировать такого типа теорему, что при разумных ограничениях на функции F,G,H (скажем F, видимо, должна быть выпуклой) решение задачи (Edit: под этим понимается точка, где достигается инфимум по допустимой области если таковая существует) либо совпадает с глобальным минимумом F(x) либо лежит на границе допустимой области.
Поскольку я это придумал сегодня по дороге на работу, я вижу два варианта. Либо это совсем неверно по каким-то очевидным причинам, которые мне с утра не пришли в голову. Либо это давно все знают и умные люди легко подскажут где найти соответствующую теорему.
no subject
Date: 2016-07-22 03:23 pm (UTC)Выпуклость функции определяется точно также как и в одномерном случае: «надграфик», т.е. множество {F(X)>=a} является выпуклой фигурой.
Последнего не понял. Сфера вся состоит из границы. Вот если допустимой областью является шар, то минимум может достигаться и внутри. Например, в одномерном случае шар это отрезок, скажем [-1, 1]. Функция x^2 достигает минимума внутри при x=0, в точке глобального минимума. Но функция (x-2)^2 уже имеет глобальный минимум за пределами [-1, 1] и она уже достигает минимума на границе при x=1.
no subject
Date: 2016-07-22 05:00 pm (UTC)Начнем с выпуклости функции. Тогда (локальный) максимум один, это как бы очевидно (а то прямая между двумя локальными не входит в надграфик). Ну и взять этот глобальный максимум; он или внутри фигуры, или нет (логика у нас пока что булева). Если нет, то ни один открытый шар внутри фигуры не содержит максимума - доказывать? А раз нет, то максимум по фигуре будет на границе.
no subject
Date: 2016-07-22 05:06 pm (UTC)Именно.