ny_quant: (Default)
[personal profile] ny_quant
После некоторых сомнений, решил поздравить именинника нестандартной (как мне кажется) задачей.

Для каких N существуют матрицы размера NxN с рациональными элементами, удовлетворяющие уравнению A^3+A+I=0

Комментарии пока что буду скринить, чтобы всем было интереснее решать.

Date: 2008-12-10 04:55 pm (UTC)
From: [identity profile] misha-b.livejournal.com
> Since the degree N characteristic polynomial of the matrix has rational coefficients, all the roots of x^3+x+1 have the samr multiplicities as roots of the characteristic polynomial.

How do you see this?

Date: 2008-12-10 08:13 pm (UTC)
From: [identity profile] prof-yura.livejournal.com
Well, it's similar to the situation with complex-conjugate roots of a polynomial with real coefficients: they have the same multiplicity. Here the roots of x^3+x+1 are Galois-conjugate over the rationals and therefore if one of them has say, multiplicity M as a root of a polynomial f(x) with rational multiplicities then all other roots of x^3+x+1 have the same multiplicity as roots of f(x).

Date: 2008-12-10 09:47 pm (UTC)
From: [identity profile] misha-b.livejournal.com

Thanks! Of course, it is just needs to be invariant under conjugation.
I was making it far too complicated.

You are welcome

Date: 2008-12-10 10:05 pm (UTC)
From: [identity profile] prof-yura.livejournal.com
a polynomial f(x) with rational multiplicities

multiplicities => coefficients

Profile

ny_quant: (Default)
ny_quant

February 2026

S M T W T F S
1 234 567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 13th, 2026 09:08 pm
Powered by Dreamwidth Studios