ny_quant: (Default)
[personal profile] ny_quant
После некоторых сомнений, решил поздравить именинника нестандартной (как мне кажется) задачей.

Для каких N существуют матрицы размера NxN с рациональными элементами, удовлетворяющие уравнению A^3+A+I=0

Комментарии пока что буду скринить, чтобы всем было интереснее решать.

Re: Это доступно

Date: 2008-12-10 01:07 pm (UTC)
From: [identity profile] prof-yura.livejournal.com
Не совсем пока дошло, почему именно важно деление (т.е. что поле)

Если у нас поле, то сразу же появляется возможность использовать весь мощный аппарат линейной алгебры, в частности, свободно оперировать понятием размерности векторного пространства.

видимо какая-то теорема, связанная с неприводимостью.

Совершенно верно. Вот (более чем) естественная аналогия. Если рассмотреть множество
${0,1, ..., n-1}$ вычетов(остатков) по модулю $n$, то на нем естественно определяются операции сложения, вычитания и умножения (по модулю $n$). Однако делить тут можно если и только если n - простое число. (Для составного n можно найти пару ненулевых вычетов, произведение которых равно n и, стало быть, равно нулю по модулю $n$).

В Вашей задаче вместо множества ${0,1, ..., n-1}$ следует рассматривать все многочлены от #x$ с рациональными коэффициентами и со степенью меньшей тройки. Получается трехмерное векторное $V$ пространство над $Q$ с базисом $1,x, x^2$, на котором можно определить умножение по модулю $x^3+x+1$: берем произведение двух многочленов и делим его с остатком на $x^3+x+1$: этот остаток (имеющий, по определению, степень меньше тройки) и объявляется результатом умножения "по модулю" $x^3+x+1$. Возможность же "деления" действительно гарантируется неприводимостью иногочлена x^3+x+1$ над полем рациональных чисел.



факт существования устанавливается только предъявлением конкретного решения.

Кстати, как Вы его нашли? Догадались?


В пространстве $V$ (определенном выще) есть естественное линейное преобразование $A$ = "умножение" на $x$, удовлетворяющее условию $A^3+A+1=0$. Я лишь расписал его матрицу относительно базиса $1,x, x^2$.


Profile

ny_quant: (Default)
ny_quant

February 2026

S M T W T F S
1 234 567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 13th, 2026 04:20 pm
Powered by Dreamwidth Studios