ny_quant: (Default)
[personal profile] ny_quant
После некоторых сомнений, решил поздравить именинника нестандартной (как мне кажется) задачей.

Для каких N существуют матрицы размера NxN с рациональными элементами, удовлетворяющие уравнению A^3+A+I=0

Комментарии пока что буду скринить, чтобы всем было интереснее решать.

Date: 2008-12-10 03:27 am (UTC)
From: [identity profile] ny-quant.livejournal.com
Я, к сожалению, вообще этого не проходил, поэтому торможу по полной :(

Когда Вы говорите "P of the roots", Вы имеете подстановку трёх собственных чисел искомой матрицы или что-то другое? Если да, то Вы уже предполагаете, что их три?

Чтоб я хоть примерно понял откуда ветер дует, как бы выглядел базис алгебры полиномов, если бы исходное уравнение включало и квадратичный член? Я это спрашиваю потому, что мне непонятно как это тройка соответствует коэффициентам уравнения.

Since det is a product of the roots it needs to be a power of x_1 x_2 x_3

Этого тоже не понял. Это обобщение на случай, когда размерность ужене ровно три а кратна трём?

Date: 2008-12-10 03:46 am (UTC)
From: [identity profile] misha-b.livejournal.com

Sorry, chto-to ya nevnyatno izlagaju.

1. All eigenvalues of the matrix are roots of x^3+x+1=0.
Let's call them a,b,c

2. det A is a product of these eigenvalues and therefore has the form
a^k b^l c^n for some integers k,l,n. Clearly det A is a rational number (all coefficients of the matrix are rational).

3. Let us now consider a polynomial of three variables P(x,y,z).
Claim:
P(a,b,c) is rational if and only if P can be written as a sum
(with rational coefficients) of powers of the elementary symmetric polynomials xyz, xy+xz+zy, x+y+z.

4. Consider now P(x,y,z)= x^k y^l c^n . We know that P(a,b,c) is rational.
Therefore P is a sum of powers of the elementary symmetric polynomials.
By some additional simple argument, which I omit, the only polynomial
which can appear is xyz. Therefore, it is a power of xyz and roots go in triples.

Mne kazhetsya, primerno tak.




Profile

ny_quant: (Default)
ny_quant

February 2026

S M T W T F S
1 234 567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 13th, 2026 11:06 am
Powered by Dreamwidth Studios