С днём рождения, kdv2005
Dec. 8th, 2008 11:31 amПосле некоторых сомнений, решил поздравить именинника нестандартной (как мне кажется) задачей.
Для каких N существуют матрицы размера NxN с рациональными элементами, удовлетворяющие уравнению A^3+A+I=0
Комментарии пока что буду скринить, чтобы всем было интереснее решать.
Для каких N существуют матрицы размера NxN с рациональными элементами, удовлетворяющие уравнению A^3+A+I=0
Комментарии пока что буду скринить, чтобы всем было интереснее решать.
no subject
Date: 2008-12-10 02:26 am (UTC)All eigenvalues of A are roots of the polynomial x^3+x+1=0
det A is the product of eigenvalues. It is not hard to see that the only way for it to be rational is for eigenvalues to go in triples.
On the other hand it is not hard to construct a matrix of size 3 (hence any size divisible by three):
0 -1 -1
1 0 0
0 1 0
(from the recursive equation).
Spasibo, zabavnaya zadacha.