ny_quant: (Default)
[personal profile] ny_quant

Спросил у Microsoft Copilot, который говорят сидит на ChatGPT 4. Solution: 10.8. Ваше решение правильное. Далеко еще ИИ до Эксела.



To solve this, we’ll use logarithms. First, let’s take the natural logarithm (ln) of both sides to remove the variable from the exponent:


[ \ln(7 \times 1.08^t) = \ln(10 \times 1.05^t) ]


Now, we can apply logarithm properties. Using the rule (\ln(a \cdot b) = \ln(a) + \ln(b)), we get:


[ \ln(7) + \ln(1.08^t) = \ln(10) + \ln(1.05^t) ]


Next, we use the property (\ln(a^b) = b \cdot \ln(a)):


[ \ln(7) + t \cdot \ln(1.08) = \ln(10) + t \cdot \ln(1.05) ]


Now, let’s isolate the variable (t):


[ t \cdot \ln(1.08) - t \cdot \ln(1.05) = \ln(10) - \ln(7) ]


Factor out the common factor of (t):


[ t \cdot (\ln(1.08) - \ln(1.05)) = \ln(10) - \ln(7) ]


Finally, solve for (t):


[ t = \frac{\ln(10) - \ln(7)}{\ln(1.08) - \ln(1.05)} ]


Using a calculator, we find that (t \approx 10.8).


Therefore, the approximate value of (t) that satisfies the equation is 10.8. 





View the entire thread this comment is a part of




This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

ny_quant: (Default)
ny_quant

December 2025

S M T W T F S
 12 34 56
7 89 10 111213
14 151617 181920
21 2223 24252627
28 29 3031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 31st, 2025 03:51 pm
Powered by Dreamwidth Studios